翻訳と辞書 |
Integration using Euler's formula : ウィキペディア英語版 | Integration using Euler's formula In integral calculus, complex numbers and Euler's formula may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of ''e''''ix'' and ''e''−''ix'', and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts, and is sufficiently powerful to integrate any rational expression involving trigonometric functions. ==Euler's formula== Euler's formula states that : Substituting −''x'' for ''x'' gives the equation : These two equations can be solved for the sine and cosine: :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Integration using Euler's formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|